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(eight equations of conservation of mass and momentum of the phases, three transfer 

equations, and relation (5.1) ) for twelve unknowns ((p) , (p), the three quantities 8,, 
$ (A) , and six velocities). This is one more equation than in the case of monodisperse 
suspension. However, the system of equations for polydisperse suspension is much more 
complex than that for a monodisperse suspension, since the equations themselves are 
integrodifferential. 

In conclusion we note that there is generally asize dispersion of particles of equal 

density ; however, in certain applications (ore separation in streams, separation in a pseu- 

doliquefied layer, etc. ) it is necessary to consider suspensions dispersed not only over size, 
but over particle density as well. 
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We show tilat the law of conservation of angular momentum in a flow of an incompressi- 
ble Stokes fluid can, in a particular case, be reduced to the equation of vortex diffusion. 

We perform the analysis using two different representations, the Eulerian and the Lagran- 

gian, of the kinetic moment of a fluid particle. We discuss the relevant concepts of the 
moments of inertia and give an equation for the rate of change of the Lagrangian moment 
of inertia of a fluid particle. 

For the classical (nonpolar) media the law of conservation of the angular momentum 

can only lead to the condition of symmetry of the stress tensor n], and nontrivial results 
can be expected only for the media with microstructure C2]. However when we consider 
the volumes whose characteristic dimensions are comparable with the scale of the velo- 
city gradient field, then the balance of the angular momentum will necessarily include 
the kinetic moment and the mean vertical motion. Moreover it appears, that in the case 
of a nonpolar (e. g. Stokes’) fluid, the first terms of the Taylor expansion of the kinetic 
moment of a particle which are not identically equal to zero, are defined by a vortex 
motion. We shall show that the kinetic moment of the elementary (from the point of 
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view of the continuum mechanics) volume of the conventional viscous fluid must be 
taken into account in the study of flows of suspensions conta~ing rotating fluidized par- 
ticles [3]. This is true particularly in the case of anisotropic turbulent flows [4]. 

I, Let us consider a volume V of characteristic dimension 6 , fixed in some inertial 
system and bounded by the surface S . Let us write the equation of balance of the angu- 
lar momentum of an incompressible fluid (of densi p)~ contained within the given 

volume, relative to a fixed point 0 

Here 12. is the radius vector originating at 0, T is the stress tensor, itf is the internal 

moment density, c is the couple stress tensor and G is the mass momentum density, We 
set R -.r-j-k (1.2) 

where I: (XX, .‘&, 5s) is the radius vector of the mass center &’ of the fluid contained 

within V. Using the Gauss-Ostrogradskii formula to pass from the surface to the volume 
integrals and ~n~oducing the Levi-Civita an~syrnrne~~c tensor eilk, we can transform 

Using now (I, 2), remembering that Zi is constant during the integration with respect 

to & and raking into account the condition of incompressibility du,fCG& = 0, we obtain 

Let us express the integrands in (1.4) in the form of Taylor series with respect to the 

mass center C.moving with velocity ~!k We shall write the derivatives at the point C 
(as distinct from the derivatives at the running points inside v) as auk/& and dv ,,i&rl. 

(4.5) 

(1.6) 
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As a result, (1.4) takes the form 

+ 
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where ~1,~~ is the moment of inertia (density) tensor of the material contained within 
the volume v 

Jrnl = \ EzW,d1’--0(85) (1.8) 
V 

Hereafter we adopt for convenience the tensor Ikl 

I* ml =~Jd-O0(8”) (1.9) 

and consider.such similar volumes V (6) with respect to the point c (center of gravity), 

for which Irnl is independent of 6 and defined only by the form and orientation of v. 
Let us rewrite (1.Q collecting all terms of like order in 6 

Here the last group of terms is related to the motion of the fluid in V relative to its 

center of gravity. The contribution of this motion towards the momeilt is of the order 
0 (b5) and becomes noticeable at sufficiently large V, i.e. when 6 are sufficiently 

near to L,where L is the characteristic linear scale of the gradient field 8/dz,. 
Dividing both parts of (1.10) by V, passing to the limit as 6 -+ 0, i.e. considering 

(1.10) when 6 < L, and taking into account the equation of impulses 

P ~+I’pf+Fk)-~=O (1.11) 

weobtain the familiar [1, S] equation of conservation of internal moment 
aCip _ - EijkTkj - r ~- 0 

P 

(1.12) 

Below we shall only consider these nonpolar fluids, in which 
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*l!li E 0. Gi=O, Cip f 0 (1.13) 

Under these conditions we find from (1.12). that the stress tensor 

(1.14) 
is symmetric. 

EijkTkj := 0 

Taking into account (1.11) and (1.9), dividing both parts of (1.8) by AVP , and pass- 
ing to the limit as 6 -+ 0, we obtain 

PEijkIj[ 2 
( 

_$ + Vp 2 
) ( 

L- &ijk I;, 

1 P 

-&- + PG 2) (4.25) 

I P 

which is also the consequence of the impulse equation (1.11). 

If ‘iI = I*6ji (which is true e. g. for a spherical or cubic segment of space), then 
expression (1.15) becomes 

a auk 
f%j k z 

3 ( 

&IL 
-&CV,ax r (1.16) 

P ) 
%k,,, a (ag+f’Fk) 

1 

which, in fact, results from taking the curl of (1.9). For an incompressible Stokes’fluid 

‘,, = - P&p + p ldv, / ax, + av, / axk) (1.17) 

this becomes the classical equation of vortex diffusion 

(1.28) 

2. Let us write the expression for the moment of inertia of the fluid element V (t) 
present at some instant within the volume V, relative to the center of mass of this ele- 
ment 

c 
ac 

pwi = pm*,VF = peijk 
vi0 

&,dV = p&ij,ij, -j-$ + 0 (85) 
1 

We now take the particle derivative of mi,which is equivalent to obtaining an expres- 
sion for the rate of change of the moment of inertia of the singled out material (remem- 
bering that 6 denotes the characteristic dimension of the volume V at the initial instant 

or 

t = 0) 
dm.* 

PdS = p(jq7* =-= PEijk s 
$ .1 + + UpT$ (2.2) 

V(f) _P 

dm. 
p -$ = #Vpeijki* jr g 

( 
>+Vpgk) -i- 0(&y 

1 P 

i.; (t)= &ii, (t), 

(2.3) 

in the case of small volrlnles. 
We see that the left-hand side of(1.15) corresponds to the change in the moment of 

momentum relative to the fixed center of mass. We can similarly show that the first 
term in the right-hand side of (1.15) corresponds to the moment of the surface forces, 
and the second term to the moment of mass forces relative to the same fixed center of 
mass of rhe particle. We can therefore, following (1.12), bring in tip* and gi* 
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GP 
* =$J.. I.*_ ( aTrp 

r3k 11 ax1 

and write (1.15) as 

P 
dmi* 

-dt -gi* -3--=- ) 
%P* 0 

(2.4) 

(2.5) 

We note that for a symmetrical volume (iif* = i6,,) the moment of momentum 

(2.6) 

is a function of rotation only (which agrees with the theorem on the kinetic moment of 
a fluid sphere given in [S]). 

3, We now obtain the rate of change of the moment of inertia iij* of a particle rela- 

tive to its moving center of gravity di+ 
ml= 

dt s 4 (%m%j)dv 
V(f) 

Taking into account the fact that (see @I) 

we have 

d&n 
dt=Um- urn + 0 (6) (3.1) 

Following the derivation of&5),we expand the integrands into series and pass to the 

limit as 6 + 0 to obtain 
(3.2) 

If at the given instant the particle has a symmetrical configuration, then 

di’ zl __ I* (% + g:) = 21*emi (3.3) 

i.e. the corresponding instantaneous change of the moment of inertia is caused only by 
deformation (which may subsequently violate this symmetry). Here e,,,f denotes the 

rate of strain component. 

Direct differentiation of (2.1) gives 

%* _ auk dijl+ 

dt- f%jk az, dt - - + p&i&* 

which on comparison with (2.3) yields 

av& dijrS avp avk 
I>% as, ,jt = PEijkiil* qdza (3.5) 

The latter can easily be shown to follow from (3.2) and in the case of a symmetrical 

(at a given instant) particle it simplifies to 

av di. * 1 
pEijk$G - pl*e,jk~~ = 2 

3 P 
a0 

= PI*&ijk 2 Elpk@I 
j 

using the identity 
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we finally obtain the following equation (used in [4]) 

auk di.,,* 
Pijk az, 7 = (3.7) 

Thus we see that the first term in the right-hand side of (1.18) is really connected 

with the change in the moment of inertia of a symmetric particle, the fact already noted 

by Batchelor v]. 
When the volumes of the fluid particles considered are comparable with the cells 

obtained by sectioning the space by means of the coordinate planes, Eqs. (1.15) and (2.5) 
take the form of the angular momentum balance equations (in the Eulerian and Lagran- 

gian representations respectively) for a differential volume. In the Cartesian coordinate 

system, the Eulerian relative moment of inertia of an incompressible fluid contained in 
a cubical cell Tr = &r&so& has the form Iif* = l/t2 6,, and is independent of 

both, the time and the coordinates. 
In the Lagrangian representation the relative moment of inertia ijk* is associated 

with the material particle filling the volume v = daj&sdxa at the instant t. The 

variation in iik* with the spatial displacement of the particle is caused by its rotation 

and deformation. It is for this reason that the use of the Lagrangian tensor iif* is accom- 
panied by the difficulties associated with the Lagrangian stress tensor. 
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